Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces

This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N ≥ 2. We address the question of well-posedness for large data having critical Besov regularity. Our result improves the analysis of R. Danchin in [13], of Chen et al in [8] and of the author in [15, 16] inasmuch as we may take initial density in B N p p,1 with 1 ≤ p < +∞. Our result relies on a new a p...

متن کامل

Global well-posedness for dissipative Korteweg-de Vries equations

This paper is devoted to the well-posedness for dissipative KdV equations ut+uxxx+|Dx| u+uux = 0, 0 < α ≤ 1. An optimal bilinear estimate is obtained in Bourgain’s type spaces, which provides global wellposedness in Hs(R), s > −3/4 for α ≤ 1/2 and s > −3/(5−2α) for α > 1/2.

متن کامل

Well-posedness for a nonsmooth acoustic system

We consider an acoustic wave system with discontinuous coe cients and nonsmooth inputs. Existence, uniqueness and continuous dependence on input data of weak solutions are established.

متن کامل

Well-posedness and ill-posedness results for dissipative Benjamin-Ono equations

We study the Cauchy problem for the dissipative Benjamin-Ono equations ut +Huxx + |D| αu+ uux = 0 with 0 ≤ α ≤ 2. When 0 ≤ α < 1, we show the ill-posedness in Hs(R), s ∈ R, in the sense that the flow map u0 7→ u (if it exists) fails to be C 2 at the origin. For 1 < α ≤ 2, we prove the global well-posedness in Hs(R), s > −α/4. It turns out that this index is optimal.

متن کامل

Well-posedness in critical spaces for barotropic viscous fluids

This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N ≥ 2. We address the question of well-posedness for large data having critical Besov regularity. Our result improve the analysis of R. Danchin in [13], by the fact that we choose initial density more general in B N p p,1 with 1 ≤ p < +∞. Our result relies on a new a priori estimate for the velocity, whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Equations & Applications

سال: 2011

ISSN: 1847-120X

DOI: 10.7153/dea-03-27